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Abstract. Motivated by the recent findings of Wiegmann–Zabrodin and Faddeev–Kashaev,
concerning the appearance of the quantumUq(sl(2)) symmetry in the problem of a Bloch
electron on a two-dimensional magnetic lattice, we introduce a modification of the tight binding
Azbel–Hofstadter Hamiltonian, that is a specific spin-S Euler top that can be considered as its
‘classical’ analogue. The eigenvalue problem for the proposed model, in the coherent state
representation, is described by theS-gap Laḿe equation and, thus, is completely solvable. We
observe a striking similarity between the shapes of the spectra of the two models for various
values of the spinS.

1. Introduction

The quantum mechanics of free electrons on two-dimensional lattices, in the presence of a
homogeneous and transverse magnetic field (‘magnetic lattices’), leads to the discovery of
a host of physically and mathematically fascinating problems.

This subject has a long history, starting with the pioneering papers of Harper, Azbel,
Zak and Chambers, Hofstadter and Wannier [1–6]. With the discovery of the quantum Hall
effects [7–9], a number of very interesting theoretical papers appeared, dealing with the
quantum-mechanical explanation of the Hall conductivity plateaus [10, 11].

More recently, in the work of Wiegmann and Zabrodin [12], it was found that the
eigenvalue problem for the Hamiltonian of the one-electron lattice problem (for rational
magnetic flux per plaquette), henceforth called the Azbel–Hofstadter (AH) Hamiltonian, can
be written as aq-difference quadratic equation, using the quantum groupUq(sl(2)), known
as the ‘Jimbo’ deformation ofSU(2), which appears naturally in this context. Their analysis
leads to the algebraic Bethe ansatz equations for the roots of its polynomial solutions, at
a particular point of the Brillouin zone of the square lattice. Subsequently, Faddeev and
Kashaev proved that this symmetry exists atall points of the Brillouin zone for square
and triangular (anisotropic, in general) lattices and they provided the corresponding Bethe
ansatz equations [15].
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However, it has not yet been possible tosolvethe Bethe ansatz equations thus obtained.
Direct numerical solutions were found, in certain cases by Hatsugaiet al [16]; but the
necessity of a systematic approximation scheme remains an open issue.

In this paper we propose a modification of the AH Hamiltonian through a specific spin-
S Euler top, which has the merit of being completely solvable. Indeed, in the coherent
state representation, the eigenvalue problem for this Euler top is described by anS-gap
Lamé equation. Numerical comparison of the spectra of the two models reveals a striking
similarity for their shapes.

In section 2 we establish a uniform notation, recalling, at the same time, the salient
results of [12, 15]. In section 3, we write the AH Hamiltonian in terms of the generators
of the Cartesianq-deformation [19] ofSU(2) and set the stage for a model Hamiltonian,
H1, which is that of a ‘Euler top’ under the ordinarySU(2) group. In the process we will
establish connections between the two differentq-deformations ofSU(2), a problem that is
interesting in its own right.

In section 4 we discuss the eigenvalue problem for the AH Hamiltonian and present
the recursion relations for the eigenvectors and the eigenvalue equation in a compact 2× 2
matrix form. The caseE = 0 admits an explicit solution [12, 16].

In section 5 we explore the symmetries of the classical Hamiltonian,H1. We provide
explicit recursion relations for the components of the eigenvectors and for the eigenvalues.
We also show how it is related to theS-gap Laḿe equation, using the coherent states of
SU(2).

In section 6 we provide numerical evidence that the spectrum of the AH Hamiltonian
may indeed be meaningfully approximated by that ofH1.

We close with our conclusions and a discussion of directions for further inquiry.

2. The quantum group slq(2) and the AH Hamiltonian

The AH Hamiltonian is a tight-binding model for a single Bloch electron on a two-
dimensional lattice and in the presence of an external, homogeneous and transverse magnetic
field [1–6, 12].

The AH Hamiltonian is

HAH =
∑
〈m,n〉

tnmeiAnmc†ncm (1)

where tnm are the hopping amplitudes,c†n, cn creation and annihilation operators for the
electron at siten = (nx, ny) ∈ Z× Z andAnm the line element, namely

e

c

∫ m

n

A · dx = Anm (2)

such that, through each elementary plaquette, we have a flux8,∏
plaquette

eiAnm = ei8/80 (3)

whereφ ≡ 8/80 = 2πM/N with M andN coprime integers and80 the flux quantum.
For such values of the magnetic flux the Hilbert space becomes an infinite number

of identicalN -dimensional copies, due to the existence of an infinite number of magnetic
translations, that commute with HamiltonianHAH. In the case of a square lattice the
dynamics is restricted to aN ×N square, magnetic, lattice. In the Landau gauge,

Ax ≡ Anx,nx+1 = 0 Ay ≡ Any,ny+1 = 8 · nx (4)
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the Bloch wavefunctionψ(nx, ny) = exp(i(kxnx+kyny))ψk(nx), where(kx, ky) ∈ [0, 2π)×
[0, 2π) and

ψk(nx +N) = ψk(nx) (5)

satisfies Harper’s equation

tx(e
ikxψn+1+ e−ikxψn−1)+ ty(ei(ky+nφ) + e−i(ky+nφ))ψn = Eψn (6)

wheretx, ty are the hopping parameters andψn ≡ ψk(n).
We shall restrict our discussion to the case of an isotropic square lattice,tx = ty = 1.
Harper’s equation can be written in matrix form

H9 = E9 (7)

where9 = (ψ1, . . . , ψN)
T and

H = eikxP + e−ikxP−1+ eikyQ+ e−ikyQ−1. (8)

The matricesQ andP are

Qk,l = ω(k−1)δk,l

Pk,l = δk−1,l k, l = 1, . . . , N
(9)

with ω = exp(2π iM/N) and all operations are performed modN .
The matricesP andQ generate the magnetic translations and the finite Heisenberg

group through the Weyl commutation relation

QP = ωPQ. (10)

The Heisenberg group elements

Jr,s = ωr·s/2P rQs (11)

provide a projective representation of the two-dimensional translation group modN [13, 14]

Jr,sJr ′,s ′ = ω(r ′ ·s−r·s ′)/2Jr+r ′,s+s ′ . (12)

The factor of1
2 in the exponents of the previous relations is defined ass+1 for N = 2s+1

and s an integer, while, forN even, it is defined as 0.5. The matricesJr,s are traceless,
unitary and they have periodN , namely

J †r,s = J−r,−s
J Nr,s = 1N.

(13)

The matricesQ andP are related through the finite Fourier transform matrixF ,

Fk,l = 1√
N
ω(k−1)(l−1) k, l = 1, . . . , N (14)

by

F · P = Q · F. (15)

Because of the symmtery

J †r,s · P · Jr,s = ω−sP
J †r,s ·Q · Jr,s = ωrQ

(16)

the Brillouin torus [0, 2π)× [0, 2π) is reduced to a smaller one [0, 2πl/N)× [0, 2πl/N),
wherel = M modN (recall that the flux is 2πM/N ).
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In [12] Wiegmann and Zabrodin made the important observation that, for the midpoint
of the Brillouin zone,

cosNkx + cosNky = 0 (17)

the spectrum ofHAH is determined by the rootszm of polynomialsP(z) of degreeN − 1,
that interpolate the wavefunction

ψn = P(qn0 ) n = 0, . . . , N − 1

q0 = eiπM/N .
(18)

The energy spectrum is given by

E = iqn0 (q0− q−1
0 )

N−1∑
m=1

zm (19)

and the rootszm satisfy the algebraic Bethe ansatz equations

q0− z2
k

q0z
2
k − 1

=
∏
m6=k

q0zk − zm
zk − q0zm

(20)

wherek = 1, . . . , N − 1.
Behind these findings is the quantum groupslq0(2), which is a deformation of the Lie

algebrasl(2) [17]

q
J0
0 J±q

−J0
0 = q±1

0 J±

[J+, J−] = q
2J0
0 − q−2J0

0

q0− q−1
0

(21)

whereJ±, J0 are expressed in terms of the magnetic translationsJr,s and the Hamiltonian,
in a specific, ‘quasi-Landau’ gauge, is expressed, in terms of theJ± as

HAH = i(q0− q−1
0 )(J− ± J+) (22)

at the midpoint(s) of the Brillouin zone.
In [15] Faddeev and Kashaev observed that the AH Hamiltonian is equivalent to the

three-site chiral Potts model [18], whose quantum group symmetry is known to lead to the
algebraic Bethe ansatz equations over specific Riemann surfaces. Thus they were able to
generalize the result of Wiegmann and Zabrodin to arbitrary points of the Brillouin zone,
as well as to anisotropic square and triangular lattices.

3. The Cartesian deformation ofsl(2) and the AH Hamiltonian

Some years ago a new deformation of thesl(2) algebra, in the Cartesian basis, was proposed,
which has a cyclic symmetry for the generators [19]

qJ1J2− q−1J2J1 = (q2− q−2)J3

qJ2J3− q−1J3J2 = (q2− q−2)J1

qJ3J1− q−1J1J3 = (q2− q−2)J2.

(23)

The representation theory for real values of the deformationq was studied by Fairlie [19]
and, in more detail, by Zhedanovet al, who pointed out that this algebra generates the
properties of a class of Askey–Wilson polynomials. Recently in [20] the representations for
q a primitive root of unity of orderN were constructed and classified. It is known that,
in this case, the standard (Jimbo) deformation ofsl(2) has irreducible representations of all
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dimensions smaller or equal to the order of the root. These representations depend on three
complex parameters and are of two types: type A irreps have a classicalsl(2) analogue,
while type B are cyclic (i.e. not ladder) of orderN [21].

The Cartesian algebra,slCq (2) has one Casimir element

C2 = (q + q−1)(J 2
1 + J 2

2 )− {J3, J̃3} (24)

where(q2− q−2)J̃3 = q−1J1J2− qJ2J1. In [22, 23, 25], using results from finite quantum
mechanics, it was realized that the AH Hamiltonian, at any point of the Brillouin zone, can
be written as the anticommutator of the two operatorsJ1 andJ2,

HAH = 1

q + q−1
{J1, J2} (25)

whereJ1, J2 andJ3 realize anN -dimensional representation ofslCq (2) and may be expressed
in terms of the generators of the Heisenberg group,Jr,s through

J1 = eiσ Jm,−m + e−iσ J−m,m
J2 = eiρJm,m + e−iρJ−m,−m
J3 = eikyQ+ e−ikyQ−1

(26)

where q = ωm
2
, ω = e2π i/N , m ≡ 1

2 mod N = (N + 1)/2 and σ = (kx − ky)/2,
ρ = (kx + ky)/2.

The unitary representation ofslCq (2) constructed above is irreducible with Casimir
element

C2 = 8 cos
2πM

N
m (27)

and

J̃3 = eikxP + e−ikxP−1. (28)

The generatorsJ1, J2, J3 can be cyclically permuted at the Brillouin point(kx, ky) = (0, 0)
by threeN ×N unitary matrices,U1, U2, U3

U−1
1 J2U1 = J3

U−1
2 J3U2 = J1

U−1
3 J1U3 = J2.

(29)

These matrices leave the correspondingJi ’s invariant. This situation reminds us of
the rotation group in three dimensions, whereπ/2−rotations around the coordinate axes
cyclically permute the generators of the group. In the appendix we construct explicitly the
group generated byU1, U2, U3.

Before concluding this section, we establish the relation of theN -dimensional unitary
matricesJ1, J2, J3 with matricesJ± andJ0, which satisfy the (Jimbo) deformation ofsl(2),
i.e. slq(2).

It is straightforward to see that, definingJ± andJ0 by

J± = ± 1

q − q−1
(J±m,±m + J±m,∓m)

Q = ωmJ0

(30)

the Jimbo deformed algebra is satisfied. Then, introducing matrices

T± = P−1J±P (31)
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we establish the relation betweenJ1, J2, J3 andJ± andJ0 as

J1 = 1

q + q−1
(q2J+ + q−2J− − T+ − T−)

J2 = − 1

q + q−1
(q−2J+ + q2J− − T+ − T−)

J3 = q2J0 + q−2J0

(32)

whereq = ωm2
.

Finally, we note that the constructed representation forJ± andJ0 is of the cyclic type
[21] since we can check that equation (30) implies

JN+ = 2× 1N. (33)

4. The eigenvalue problem for the AH Hamiltonian

Although in the literature the eigenvalue problem has been discussed in various contexts,
here we present a compact method for the determination of the eigenvalues and eigenvectors,
using the tridiagonal form of the AH Hamiltonian. This method is especially suited for fast
numerical calculations for largeN .

The eigenvalue problem, in components, is the following

eikyψk−1+ 2 cos

(
(k − 1)

2π

N
+ kx

)
ψk + e−ikyψk+1 = Eψk (34)

wherek = 1, . . . , N and we use periodic boundary conditions

ψN+l = ψl (35)

for all l. We define homogeneous variableszk

zk = ψk+1

ψk
(36)

and we use the ‘M̈obius’ notation(
a b

c d

)
· z ≡ az+ b

cz+ d (37)

to rewrite equations (34) in the form

zk =
(
E − 2 cos((k − 1) 2π

N
+ kx) −eiky

e−iky 0

)
· zk−1 (38)

for k = 1, . . . , N . The last equation,k = N , gives, by iteration, the relation

zN =
{ N−1∏
k=1

(
E − 2 cos((k − 1) 2π

N
+ kx) −eiky

e−iky 0

)}
· z0. (39)

SincezN = z0, we deduce the characteristic equation, namely

det

[ N−1∏
k=1

(
E − 2 cos((k − 1) 2π

N
+ kx) −eiky

e−iky 0

)
− 12×2

]
= 0 (40)

and we may then compute the components of the corresponding eigenvector, by recursion,
starting fromzN , which is a fixed point of the M̈obius transformation, equation (38).

It is known [4] that the characteristic polynomial takes the form

PN(E)+ (−)N × 4(cosNkx + cosNky) (41)
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wherePN(E) is a polynomial of degreeN in E and coefficients that do not depend on
(kx, ky). The study of the structure of the gaps between the eigenvalues is a very interesting
problem in functional analysis and noncommutative geometry (cf [24] for a recent review).

It should be noted that the existence of a zeromode for equation (40) depends on(kx, ky).
We observe that, forN even andr = N/2, we obtain

J †r,rHAHJr,r +HAH = 0 (42)

for any point of the Brillouin zone. This implies the existence of a reflection symmetry
for the spectrum, i.e. for any eigenvalueE there exists an eigenvalue−E. This does not
necessarily imply the existence of the eigenvalueE = 0; if it exists, however, it must
necessarily be doubly degenerate.

ForN odd the reflection symmetry,E ↔ −E is approximate.
On the other hand, forkx + ky = π , the Hamiltonian anticommutes with the discrete

Fourier transform, which implies that, for anyN , the reflection symmetry is realized and,
for N odd, these points belong to the midband, equation (17) and the zeromode always
exists.

In the context of the quantum groupUq(sl(2)), the eigenvector corresponding toE = 0
is a q-Askey–Wilson polynomial [12] and the structure of its roots as a function of the
magnetic flux has been studied by Kohmotoet al [16].

5. The symmetries of a Euler top

We now introduce the classical analogue Hamiltonian

H1 = 1

2i
{S1,S2} = 1

4i
(S2
+ − S2

−) (43)

in the spin-S representation, withQ = 2S+1, whereSi are the standardSU(2) generators.
We propose to study the eigenvalue problem ofH1 with the hope to gain some intuition,

which may be useful for the real problem (i.e. that of the AH Hamiltonian).
The matrix elements ofH1 are

(H1)k,k′ = 1

4i
(akδk′,k+2− ak′δk′,k−2) (44)

where

ak ≡ ak−S−1ak−S (45)

and

am =
√
S(S + 1)−m(m+ 1) (46)

with k, k′ = 1, . . . ,2S + 1. The structure of the matrix shows immediately that the even-
numbered components decouple from the odd-numbered ones for any value ofS.

The three operatorsR1,2 ≡ e−iπS1,2 and R3 ≡ ei π2 S3 will prove themselves useful
for the decomposition of the 2S + 1-dimensional eigenspace in convenient subspaces. In
components they read as follows

(R1)k,k′ = eiπSδk+k′,2S+2

(R2)k,k′ = e2iπS(−1)k−1δk+k′,2S+2

(R3)k,k′ = ei π2 S(−i)k−1δk,k′ .

(47)
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They satisfy the following commutation relations

R1R2 = (−1)2SR2R1 = (R3)
2

R3R1 = R2R3

(R1,2)
2 = (R3)

4 = (−1)2S.

(48)

From the above it follows thatR1,2,3 anticommute with the Hamiltonian and we can
construct two projectors, thatcommutewith the Hamiltonian,

P± = 1
2(1± e−iπS(R3)

2) (49)

and

Q± = 1
2(1± e−iπSR3R2). (50)

P± project on the subspaces of the odd- and even-indexed components of the eigenvectors,
while Q± on the positive and negative energy eigenspaces. The HamiltonianH1 thus may
be written as a direct sum of HamiltoniansH±

H = H+ ⊕H− (51)

where

H± = HP± (52)

and the dimensions of the corresponding Hilbert spaces are, for integerS, S + 1 andS
respectively while, for half-integerS, they both have dimensionS + 1

2. In components

(H+)k,k′ = a2k+1δk′,k+1− a2k−1δk′,k−1

(H−)k,k′ = a2k+2δk′,k+1− a2kδk′,k−1.
(53)

It is straightforward to numerically diagonalize the HamiltoniansH± and compute the
eigenvalues and eigenfunctions. The anticommutation relations (48) imply a spectrum
antisymmetric aboutE = 0 for any value ofS and for both subspaces. The general
structure of the eigenvectors is qualitatively similar to that of the one-dimensional harmonic
oscillator and their phase structure (real/imaginary components appear symmetrically or
antisymmetrically up to factors of±1 or±i) may be deduced from the antidiagonal structure
of the projectorsQ±. Analytically, it is possible to completely describe theE = 0 case and
provide recursion relations for theE 6= 0 cases.

We introduce the standard notation for the Möbius transformation(
a b

c d

)
· w ≡ aw + b

cw + d . (54)

It is easy to show that the eigenvalue problemH|9〉 = E|9〉 takes the following form in
component notation (whereE ≡ 2iE)

−a2k−1ψ2k−1+ a2k+1ψ2k+3 = Eψ2k+1

−a2kψ2k + a2k+2ψ2k+4 = Eψ2k+2
(55)

corresponding to the odd and even subspaces. Defining

zk ≡ ψ2k+1

ψ2k−1

wk ≡ ψ2k+2

ψ2k

(56)
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we solve equations (55) by the M̈obius transformation

zk+1 =
{ k∏
m=1

(
E a2m−1

a2m+1 0

)}
· z1 (57)

wherek = 1, . . . , S − 1 andz1 = E/a1. The last equation in this subspace takes the form

0=
(
E− a2S−1

1 0

)
· zS (58)

which is the characteristic equation forE in the odd-numbered sector. Similarly, for the
even components one has (w1 = E/a2)

wk+1 =
{ k∏
m=1

(
E a2m

a2m+2 0

)}
· w1 (59)

and the corresponding characteristic equation

0=
(
E+ a2S−2

1 0

)
· wS−1. (60)

The above analysis becomes explicit forE = 0. There are several possibilities, depending
on the values ofS.
• IntegerS. E = 0 is an eigenvalue only forS = 4k + 1, 4k + 3 (nondegenerate) and

S = 4k + 2 (doubly degenerate).
The explicit form of the corresponding eigenvector|9b

E=0〉 ≡ (ψ1, . . . , ψ2S+1) is

ψ4n+2 =
∏n−1
m=0a4m+2∏n
m=1a4m

ψ2 (61)

for the nondegenerate case and identical to that of the half-integerS (see below) for the
doubly degenerate case; all other components are zero.
• Half-integer S. There are two possible cases to consider:S = (4k + 1)/2 and

S = (4k + 3)/2. In the first,E = 0 is an eigenvalue, that is doubly degenerate, one
belonging to the(+), the other to the(−) subspace.

The two eigenvectors, corresponding toE = 0 are |9(1)〉 ≡ (ψ
(1)
1 , . . . , ψ

(1)
2S+1) and

|9(2)〉 ≡ (ψ(2)
1 , . . . , ψ

(2)
2S+1)

ψ
(1)
4n+1 =

∏n−1
m=0a4m+1∏n
m=1a4m−1

ψ
(1)
1

ψ
(2)
4n+2 =

∏n−1
m=0a4m+2∏n
m=1a4m

ψ
(2)
2

(62)

whereS = (4k + 3)/2. E = 0 does not belong to the spectrum, as may be proved by
explicit calculation.

In the above relations theψ1, ψ2 are normalization constants. To determine the
components of the eigenvectors (zk, wk) one has simply to evaluate the two-dimensional
matrix products in equations (57) and (59) for each rootE of the characteristic equations (58)
and (60).

Another approach to the problem is provided by the coherent state representation of
SU(2) where we write the generators as differential operators and the algebraic eigenvalue
problem becomes a Schrödinger problem in a class of potentials. This connection has been
used in the inverse way for classifying potentials that have a ‘quasi-integrable’ spectrum,
i.e. a finite number of eigenstates decouples from the rest and may be determined byfinite
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matrix methods [26–28]. Even more recently, these same equations have appeared in the
study of the correlation functions of Wess–Zumino–Witten models on the torus [29].

In factH1 belongs to a family of Hamiltonians with the same spectrum

H = eiαS3H1e−iαS3 = cos 2α ·H1+ sin 2α ·H2 (63)

whereH1 = {S1,S2} andH2 = S2
1 − S2

2. H2 is known to describe isotropic paramagnets
in two dimensions and a similar Hamiltonian has been studied in [26]. Indeed, by aS2

rotation of angleπ/2, one obtains the Zaslavskii–Ul’yanov HamiltonianH3 [26] in zero
external magnetic field

H3 = e−i π2 S2e−i π2 S3H1ei π2 S3ei π2 S2 = S2
3 − S2

2 . (64)

In the coherent state basis, theSU(2) generators have the following form

S1 = S cosφ − sinφ
d

dφ

S2 = S sinφ + cosφ
d

dφ

S3 = −i
d

dφ

(65)

and the eigenvalue problem forH3 is[
(1+ cos2 φ)

d2

dφ2
+
(
S − 1

2

)
sin 2φ

d

dφ
+ (E + S2 sin2 φ + S cos2 φ)

]
8(φ) = 0. (66)

The componentsψm m = −S, . . . , S of eigenvectors ofH3, are related to the function8(φ)
by

8(φ) =
S∑

m=−S

ψm√
(S −m)!(S +m)! eimφ. (67)

If we change variables, following [26], from(φ,8(φ)) to (x,9(x)), defined by

9(x) = 8(φ(x))(1+ cos2 φ(x))−S/2

d

dx
= 1√

2
(1+ cos2 φ(x))1/2

d

dφ
.

(68)

Equation (66), after a redefinition

x = u−K 1
2 (69)

whereK 1
2 is the complete elliptic integral of the first kind [30], becomes theS-gap Laḿe

equation [30] [
d2

du2
+ E + S(S + 1)

2
− S(S + 1)

sn2 u

2

]
9(u) = 0 (70)

where snu is the elliptic sine of modulus 1/
√

2 [30]. This equation has polynomial solutions
in terms of elliptic sines and cosines and appears in the inverse scattering method for the
KdV equation and the potential corresponds to the soliton solutions of the KdV.
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Figure 1. Comparison of the spectra ofHAH (grey points) andH1 (black points),N = 111.

6. Numerical results

In this section we compute numerically the eigenvalues and eigenvectors of the AH
Hamiltonian and the model Hamiltonian,H1, for various dimensions. The size of the
matrix representation of the AH Hamiltonian depends solely on the denominator of the
magnetic flux,φ = 2πM/N , whereM andN are relatively prime integers. In the case of
H1, the size isN = 2S + 1 and, as noted previously, there are two decoupled, invariant
subspaces, of dimensionS and S + 1 respectively. For simplicity, we shall compare the
spectra, forN odd, ofHAH andH1.

Furthermore, our toy Hamiltonian does not depend on the Bloch momenta(kx, ky) but,
since the Brillouin zone has size equal to the flux, our approximation should be better,
for flux 2π/N , at the point(kx, ky) = (0, 0), where the AH Hamiltonian has maximal
symmetry (commutes with the finite Fourier transform matrix) and has both odd and even
eigenfunctions, as is the case forH1.

In figure 1 we compare the spectra for the caseN = 111 and in figure 2 we present
the ground-state eigenvectors for the two Hamiltonians. In comparing the spectra we have
normalized them both to have the same numerical value for the ground-state energy.

In figure 3 we give the normalized difference of the two spectra forN = 111. In
figure 4 we display the maximum error for several values ofN .

7. Conclusions and perspectives

The main point of this paper is the striking similarity between the spectrum of the AH
Hamiltonian and that of our Euler top model. For the moment this is an empirical
observation, for which we still lack a physical appreciation from first principles.

From the quantum group symmetry point of view the cyclic character of theUq(sl(2))
representations, which appear in this problem would forbid a direct classical largeN limit.
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Figure 2. Comparison of the ground-state eigenvectors ofHAH (grey points) andH1 (black
points),N = 111.

Figure 3. Plot ofEAH(n)−EH1(n)× (EAH(1)/EH1(1)). Note the striking difference between
the values of the even and the odd subspaces.

However, our numerical results indicate that our approximation, through the Euler top,
gets better with increasingN . This probably suggests some kind of ‘analytic continuation’
between the the Cartesian deformation ofSU(2) and the ‘classical’SU(2) for the root of
unity case. This is still an open problem, for which our results seem to indicate a promising
direction of attack.
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Figure 4. Log–log plot for the maximum difference forN = 55 to N = 145 in steps of 10
for the spectraEAH andEH1. Black dots are for the even subspaces and grey dots for the odd
subspaces ofH1.

Another problem is the dependence on the Brillouin zone parameters(kx, ky) as well as
on the fluxφ = 2πM/N ; indeed we recall that our results hold only forM = 1 and it is an
interesting question, for instance, to calculate the ‘Hofstadter butterfly’ for the Euler top.

We hope to return to these questions in future work.
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Appendix. Quantum rotations

In order to construct the three matricesU1, U2 andU3, mentioned in section 3 we have
to determine the inner automorphism group of the discrete Heisenberg group matricesJr,s ,
i.e. matricesU(A), such that

U †(A)Jr,sU(A) = J(r,s)A (71)

wherer, s = 0, . . . , N−1, for every matrixA ∈ SL(2,ZN) [22, 23]. It is obvious, from the
definition of the generatorsJ1, J2 andJ3, that we can construct matricesU1, U2 andU3, if
we find three 2×2 matricesA1, A2 andA3, which leave invariant the set of indices(m,−m),
(m,m), (0, 1) respectively. We check immediately that there exist three Abelian subgroups
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of SL(2,ZN), which do the job, generated by

A1 =
(
m m

−m 3m

)
A2 =

(
3m m

−m m

)
A3 =

(
1 2
0 1

)
.

(72)

We setUi = U(Ai), with i = 1, 2, 3. Using the explicit forms forU(A),A ∈ SL(2,ZN)
from [23], we find

(U1)k,l = 1√
N
ωm(l−k)(3l−k−2) ×

{
1
−i

}
(U2)k,l = 1√

N
ωm(l−k)(l−3k+2) ×

{
1
−i

}
(U3)k,l = δk,lωm(k−1)2

(73)

wherek, l = 1, . . . , N and the symbol{
1
−i

}
≡
{

1 N ≡ 1 mod 4

−i N ≡ −1 mod 4.
(74)

We note finally that the cyclic groups generated byU1,U2 andU3 are of orderN . The
matricesU1, U2 andU3 can be used to define specific discrete Askey–Wilson polynomials
as the columns of the matrix

PAW = U †1U2 (75)

cf the papers of Zhedanov and collaborators in [19].
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